

Evaluation of Raw and Processed Humalite on Soil Health Indicators in Two Agro-ecosystems (Annual and Land-Remediation) Yamily Zavala, Ph.D

Acknowledgement: This study was funded by Westmoreland Mining Holdings LLC

Abstract

Two studies to evaluate the benefits on soil health and crop performances of different levels of Humic materials from Raw Humalite (RH) and Processed Humalite (PH) were conducted on a sandy loam (Annual Crop; AC) and Loam (Land-Remediation-Oats; LR) in east central Alberta. The PH used were Canadian Humalite (P-CH), Humi(K), and BlackEarth. Same treatments were applied at seeding for LR-Oats and post seeding for AC-Canola with their recommended soil NPK base on sol fertility status. Treatments were: Raw Humalite (RH) and Raw Humalite Sifted (RHS) at 100 and 250 lb/A each; PH from Canadian Humalite (PH-CH) and PH from Black Earth (PH-BE) at 250 lb/A; PH from Humi(K) 2 and 4 lb/A and the control (no Humalite). Treatments were replicated 4 times in a complete randomized block design for statistical evaluation. A soil health benchmark was done in both sites for monitoring treatments responses over time. Both sites presented poor soil aggregate stability with a compacted soil in the annual cropping system. Biological assessments showed that both soils are bacteria dominant, with a higher level in the remediation side. Active Carbon levels were at low levels, decreasing by depth in the annual system but increasing in the remediation site. In general, both site soils can be considered with low biological activities and low diversities at the rooting zone. Differences in the parameters evaluated for the Annual cropping system (Canola yield) and the Land-Remediation site (Oats: Biomass, crude protein content and feed analysis) from the treatments applied were not statistically significant. The lack of statistical response might be attributed to the high variability observed within treatments. The canola yields were within the average yield range for the area (27-30 bu/A) with the exception being the highest yield of 38 bu/A for the RH at 100 lb/A. On the contrary, oat biomass production was lower than a local oat silage study which yielded an average of 4000 lb/A in 2020. The highest biomass for oats in the study was 3651 lb/A for the 2 lb/A for Humi(K). Applications of these materials, however, show a trend (although not statistically significant) of increasing canola yield up to 9 bu/A and up to 1100 lb/A of oats biomass when they were compared with the control. Feed analyses of the oat biomass showed some of the nutrients were not in balance for complete cattle rations which could be attributed to the unbalanced nutrients in the soil (low P, high N, K, Mg). Biomass nutrient levels were low for P, Ca and Cu, high for K, Mg, Fe and Mn while crude protein and Zn were in the desired levels. It is important to continue to monitor these impacts overtime as they can be influenced by soil parameters.

Objective: To evaluate the benefit to soil health constraints and crop yield from various humalite products on a reclaimed soil and within an annual cropping system.

Material and methods

These studies were located at SE 25-29-13-W4 (Annual Crop; AC-Canola) and NW 33-30-11-W4 Land Remediation; LR-Oats) near Hanna, Alberta. Canola (Liberty 1234, at 4 lb/A, 6-8 plants/square foot) was seeded into a pea stubble and oats (CDC Baler, 75 lb/A) in a recently reclaimed topsoil. Table 1 contains a summary of the treatments which were replicated 4 times in a complete randomized block design for statistical analysis. All treatments were applied in plot sizes of 67 m². All plots received a base soil nutrient recommendation of 150 lb/A of 26-18-5-3. A soil health benchmark analysis was done at both sites prior to seeding for monitoring treatment responses over time (see reports in Annex A-AC-Canola and Annex B-LR-Oats). Treatments were broadcasted at both sites, at seeding at LR-Oats and at the rosette stage at the AC-Canola. Table 2 shows Hanna area precipitation (in inches) for 2020. Oats was seeded (June 24) using CARA's Henderson 500 small plot drill and the AC-Canola site was seeded with a field size air drill (May 15). The canola was harvested using a Wintersteiger combine on September 18. The LR-oat biomass was cut September 23 using a flail type forage cutter. Table 3 shows the canola yield, bushel weight and TKW (thousand kernel weight). Table 4 and 5 shows the oat biomass yield and feed quality, micro and macro nutrients. All data were analyzed for statistical significance by using one-way ANOVA and LSD of the mean by Minitab 17.

_							
Treat		Treatment Descriptions					
TRT-1	NPK-Control*	NO Humic material only NPK					
TRT-2	RH100	Raw Humalite 100 lb/A					
TRT-3	RH250	Raw Humalite 250 lb/A					
TRT-4	RH100Sift	Raw Humalite sifted to <5 mm particle size 100 lb/A					
TRT-5	RH250Sift	Raw Humalite sifted to <5 mm mesh 250 lb/A					
TRT-6	Humi(K)2	Processed Humalite brand Humi(k) 2 lb/A					
TRT-7	Humi(K)4	Processed Humalite brand Humi(k) 4 lb/A					
TRT-8	PH-CH250	Processed Humalite brand Canadian Humalite 250 lb/A					
TRT-9	PH-BE250	Processed Humalite brand Black Earth 250 lb/A					

Table 1. Humic Materials and Treatment Descriptions

*All treatments received the same NPK recommended fertilizer

Table 2. Precipitation

Month	Inch
May	2.5
June	4.7
July	2.4
Aug	1.9
Total	11.4

Results and Discussion:

Soil health benchmarks for two sites showed physical, chemical and biological constraints. Both sites presented poor soil aggregate stability. Active Carbon levels were low, decreasing by depth in the annual system but increasing in the remediation site. The remediation site had a higher level of total carbon content which might be characteristic of this soil from within the mine site. High C:N ratios (as documented for this site) can immobilize N during high microbial activity. In general, evaluation of soils at both sites show low biological activities and low diversities at the rooting zone. The soil microbial respiration (Annex A-AC-Canola Biophysical & Others), 0.28, 0.25, 0.17 mg CO2/g soil at depths of 0-3, 3-6, 6-12 inches respectively, were low when compared with more active soils (0.6 ± 0.3 mg CO2/g soil) is corroborated with the low biological diversity reported in the Soil Food Web assessment (Annex A-AC-CANOLA-SFW). In both sites' fungal biomass, protozoa (count and diversity) and nematodes (counts) decrease by depth while bacteria biomass increases. This is an indication of these soils being bacteria dominant. It was also observed that there were extremely low nematode counts (less than 1 nematode /g soil) in both sites (Annex A-AC-CANOLA-SFW and Annex B-LR-Oats-SFW). Future soil evaluations of these sites at 0-3 inches will allow us to see the treatment effects on soil biology.

There were also physical and chemical constraints in both sites (Annex A-AC-CANOLA-Biophysical & Others and Annex B-LR-Oats-Biophysical & Others). Soil wet aggregates were less than 21%, which is an indication of poor soil stability. The annual cropping system had a compacted layer at 11 cm where roots will not growth properly. Chemical evaluation of the remediation site showed nutrient constraints: low availability of P, with high or very high K, Fe, Mn N and Mg which could be causing antagonism with other nutrients uptake by the roots (Annex B-LR-Oats-Chemicals).

	Annual Cropping System-Canola					
	Yield (bu/a)	Bushel Weight	TKW*			
Treatments	(00) 07	(lb/bu)				
NPK-Control	29	55	10			
RH100	38	54	11			
RH250	30	54	10			
RH100Sift	33	54	11			
RH250Sift	30	55	10			
Humi(K)2	30	54	10			
Humi(K)4	34	54	11			
PH-CH250	32	55	10			
PH-BE250	33	55	11			

Table 3. Mean averages of canola yields, bushel weight and TKW affected by different
sources of humic materials in Canola (Liberty 1234).

*TKW: Thousand Kernel weight

Table 3 shows the average yield, bushel weight and TKW of canola by treatment. The highest yield found was RH treatment at 100 lb/A with 38 bu/A but it was not statistically significant when compared with the other treatments. Statistical analysis indicated that there were not statistically significant differences among treatments applications for both sites. The reason was due to the high variability in responses within treatments as it is seen in Figure 1, 2 and 3 for canola yield, oats biomass and crude protein. A large portion of the bar above and below the mean is an indication of high yield variability within that treatment as it can be observed for RH100 treatment for canola (Figure 1), RH250 treatment for Oats Biomass (Figure 2) and Humi(k)4 treatment for Oat biomass crude protein (Figure3). However, applications of these materials showed a trend of increasing canola yield up to 9 bu/A when compared with the control but not statistically significant.

Table 4, 5 and 6 show the responses in Oat biomass and feed quality, micro and macro nutrients uptake by oats treated with humic materials. The highest biomass average was for treatment humi(k)2 with 3651 lb/A, followed by RH250 with 3115 lb/A. These yields were below the average 2020 yield for an oat silage trial (4000lb/A) grown under similar climatic conditions. Fig 2 shows that these two treatments has a huge variability (bar above and below average yield) in yield response of at least 1000 lb/A. A similar trend of positive response compared with the control was also observed in biomass production when the humic materials were applied except for PH-BE250 and PH-CH250. Applications of these materials show a trend of increasing biomass up to 1100 bu/A when compared with the control but not statistically significant among treatments.

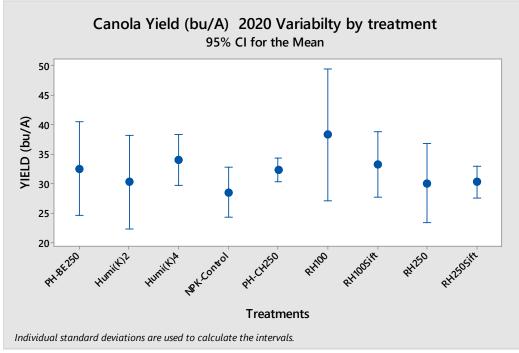


Figure 1. Mean of Canola yields with 95% coefficient of Interval (variation) within mean (bar above & below yield) in bu/A

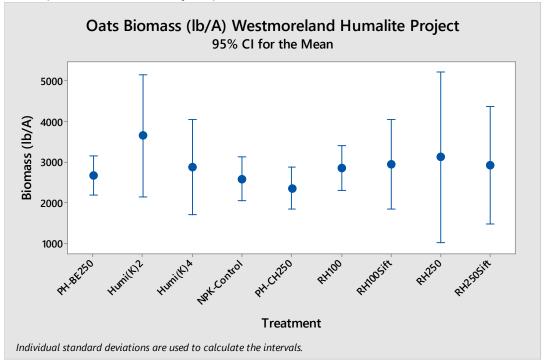


Figure 2. Mean averages Oats biomass with 95% coefficient of Interval (variation) within mean (bar above & below yield) in Ib/A

Figure 3. Mean averages Oats Crude protein with 95% coefficient of Interval (variation) within mean (bar above & below yield) in %

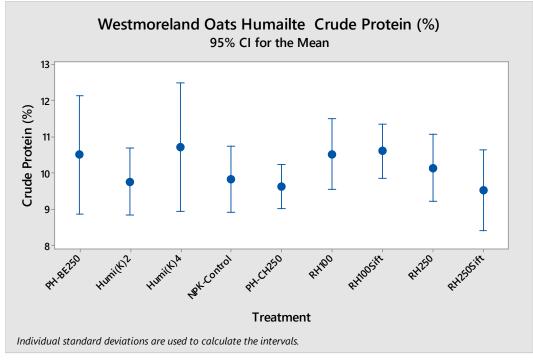


Table 4. Mean averages of Oat Biomass and feed quality analysis at the Land Remediation site affected by humic materials.

	Land Remediation Site							
	Oat	Crude Protein	RFV	ADF	NDF	TDN		
Treatments	Biomass Ib/A	%%%%%						
NPK	2575	10	129	36	44	67		
RH100	2840	11	139	35	42	69		
RH250	3115	10	129	36	44	67		
RH100Sift	2942	11	130	36	44	67		
RH250Sift	2913	10	128	37	44	67		
Humi(K)2	3651	10	125	37	45	66		
Humi(K)4	2877	11	124	36	46	66		
PH-250	2348	10	134	35	43	68		
BEH-250	2664	11	133	35	43	68		

While crude protein and Zn of the oat biomass samples were in the desired levels, analyses of the oats' biomass showed some of the nutrients were not in balance for complete cattle rations. This could be attributed to the unbalanced nutrients in the soil (low P, high N, K, Mg). Biomass nutrient levels were low for P, Ca and Cu, high high for K, Mg, Fe and Mn. Biomass nutrient uptake might have been affected by the antagonist effect of some nutrients which were high in the soil. Low P availability in the soil might justify the low P value in the tissue. Calcium uptake might have been affected by the high level of Mg, Ca and/or Na in the soil even though its soil level was adequate (medium) and the low biomass Cu uptake might have being affected by high Mn in the soil (Tables 5 and 6 and Annex B-LR-Oats-Chemicals).

	Calcium	Phosphorus	Potassium	Magnesium	Sulphur
Treatments			%		-
NPK	0.27	0.19	1.65	0.18	0.17
RH100	0.31	0.21	1.78	0.20	0.18
RH250	0.31	0.19	1.74	0.19	0.17
RH100Sift	0.34	0.19	2.02	0.21	0.18
RH250Sift	0.27	0.17	1.78	0.18	0.16
Humi(K)2	0.30	0.18	2.00	0.19	0.16
Humi(K)4	0.34	0.18	1.84	0.21	0.17
PH-250	0.30	0.20	1.64	0.20	0.17
BEH-250	0.29	0.19	1.84	0.19	0.17

Table 5.Mean averages of Oat Biomass and feed quality analysis for Macronutrients at theLand Remediation site affected by humic materials.

	······································							
	Copper	Iron	Mn	Zn				
Treatments		u	g/g					
NPK	3.38	276	117	38				
RH100	3.01	271	126	42				
RH250	3.30	438	116	40				
RH100Sift	3.63	310	105	39				
RH250Sift	3.31	318	94	36				
Humi(K)2	3.53	317	94	37				
Humi(K)4	2.97	281	118	42				
PH-250	3.28	377	130	41				
BEH-250	3.34	324	121	39				

Table 6. Mean averages of Oat Biomass and feed quality analysis for Micronutrients at the Land Remediation site affected by humic materials.

Conclusions:

Data collected during 2020 in both sites using the same treatments showed a high variability in yield responses regardless of good moisture during the growing season. Canola average yields were higher for humic material treatments compared with the control, but they were not statistical significantly due to variability within treatment plots. Base on this year's evaluation, it could be inferred that addition of humic material might have a potential to improve crop performance over time by eliminating some of the soil health constraints. To accomplish this, each system will need to be addressed in a way that will allow soil biology to improve by including into these systems not only a rotation with a cocktail crop but also inoculants with healthy biology to speed the process of soil healing along with the humic materials. Treating these sites as a whole entity will enhance soil biology which might start improving soil physical constraints while balancing its chemical properties (nutrient availability). For all the above, it will be important to evaluate these humic materials for a longer period to accomplish and understand their role in soil healing.

Annex A- AC-CANOLA

SOIL HEALTH LAB REPORT

CARA-Humalite-Canola James Madges Box 690 Oyen, Alberta T0J2J0 carashl@telus.net

Lab Submission 1-002338

LAB #	SAMPLE NAME	DEPTH (inches)	LAND LOCATION	ASSESSMENT	OBSERVATIONS
750 751	TT 1.	0-3 3-6			
755	Humalite	0-6	NW 33-30-11-W4	Benchmark	
756		6-12			

Highway 41E, Oyen, Alberta T0J 2J0

E-mail: carashl@telus.net Phone: (403) 664 3777

Fax: (403) 664 3000

Annex A- AC-CANOLA-Biophysical & Others

Submission N/Land Location	Farmer Id No.	Sample No.	Depth (cm)
		750	0-7.5
1-002338	Humalite	751	7.5-15
		756	15-30

% Sand	% Silt	% Clay	Textural Class:	_
60	33	7	Coarse	Sandy Loam
60	29	11	Coarse	Sandy Loam
70	22	7	Coarse	Sandy Loam

Soil Health Analysis: Biophysical & Others

				<u> </u>		L	•			
	Indicator		Resu	ılts		Score		Constraint(s)		
	Indicator	750	751	756	750	751	756		straint(s)	
	Wet Aggregate Stability (%)	21	14	14	20	13	17	A A 1	n, water infiltration, rooting, , wind and water erosion,	
Ţ	Water Infiltration (min)	N/A	N/A	N/A	####	####	###	#VALUE!		
Physical	Bulk Density (g/cm3)	1.14	0.91	0.78	100	100	100			
Γ	Compaction Depth/cm (200psi)	6	6	6	9	9	9	spader) • deep & shallow-ro	ning (strip till, aerators, broadfork, ooted cover crops •Living mulch, erm: Avoid traffic on wet soils	
	Compaction Depth/cm (300psi)	11	11	11	0	0	0	Short: Mechanical soil loosening (strip till, aerators, broadfr spader) • deep & shallow-rooted cover crops •Living mulcl interseed cover crop. Long term: Avoid traffic on wet soils tillage/loads. Use controlled traffic patterns/lanes.		
				Physic	cal He	ealth:	:			
	Organic Matter (%)	2	2	2	34	34	34		n, aggregate stability, fertility, activity, cation exchange capacity, carbon storage	
	Active Carbon (ppm)	256	88	57	17	4	4		biomass growth and activity, rage, aggregate stability, bulk supply of labile carbon	
	Sample Depth		0-7	.5				7.5-15	15-30	
lcal	TN (%) (Total Nitrogen)		0.1				0.16	0.09		
Biological	TC (%) (Total Carbon)		1.75					1.44	0.68	
Bi	TOC (%) (Total Organic Carbon)		1.7	4				1.31	0.58	
	C:N Ratio	10	9	7	99	100	100			
	Microbial Respiration (mg CO ₂ /g)	0.28	0.25	0.17	14	12	12	Soil microbial activity and a decomposition, nutrient tra aggregate formation and sta	nsformation and release potential,	

Biological Health:

Physical and Biological Indicator Scores are calculated using the cumulative normal distribution function for Coarse, Medium, and Fine textural classes. Depending on the measured soil texture distribution, this worksheet identifies the appropriate soil textural class and uses the corresponding Scoring Function. Each Indicator Score represents the percentage of all samples scoring at or below the measured value when compared across the complete sample database. Indicator Scores are assigned a color grade using the follows system: Very High, Score of 80-100 (Blue); High, Score of 60-80 (Green); Medium, Score of 40-60 (Yellow); Low, Score of 20-40 (Orange); Very Low, Score of 0-20 (Red). For Other Nutrients Ratings, a Score of 1 is best (blue) and 0 is worst (red).

Submission N/Land	Far
T a set is a	
Location	

Submission N/Land Location	Farmer Id No.	Sample No.	Depth (cm)	
1-002338	Humalite	750	0-7.5	
1-002550	Tumane	751	7.5-15	

% Sand	% Silt	% Clay	Fextural Class	:
60	33	7	Coarse	Sandy Loam
60	29	11	Coarse	Sandy Loam

Soil Health Analysis: Biophysical & Others

	Indicator	Resi	ılts	Sco	ore	Suggestion(a)
	mulcator	750	751	750	751	Suggestion(s)
	Wet Aggregate Stability (%)	21	14	20	13	Short: Improve soil Biology diversity • Use deep & shallow-rooted cover (cocktail) /rotation crops • Add manure, green manure, mulch. Long: Reduce tillage • Rotate with sod crops • Incorporate high biomass cover (cocktail) crop
	Water Infiltration (min)	N/A	N/A	####	###	#VALUE!
Physical	Bulk Density (g/cm3)	1.14	0.91	100	100	
Pł	Compaction Depth/cm (200psi)	6	6	9	9	Short: Mechanical soil loosening (strip till, aerators, broadfork, spader) • deep & shallow-rooted cover crops •Living mulch, cocktail cover crop. Long term: Avoid traffic on wet soils /tillage/loads.
	Compaction Depth/cm (300psi)	11	11	0	0	Short: Mechanical soil loosening (strip till, aerators, broadfork, spader) • deep & shallow-rooted cover crops •Living mulch or interseed cover crop. Long term: Avoid traffic on wet soils
			I	Physic	cal H	Iealth:
	Organic Matter (%)	2	2	34	34	 Add stable organic materials, mulch • Add compost and organic amendments Incorporate rotation with cocktail
Biological	Active Carbon (ppm) 256		88	17	4	Short: Add tresh organic materials • Use shallow & deep-rooted cover/rotation crops • Add manure, green manure, mulch. Long: Reduce tillage • Rotate with sod crop • Cocktail Cover crop
В	C:N Ratio	10	9	99	100	
	Microbial Respiration (mg CO ₂ /g)	0.28	0.25	14	12	 Add fresh OM• Add manure, green manure • reduce biocide usage. Long: Beduce tillage/mechanical cultivation •
			В	iolog	ical]	Health:

Annex A- AC-CANOLA-SFW

CARASHLab Highway 41E, Oyen, Alberta T0J 2J0 Canada Phone: (403) 664 3777 Fax: (403) 664 3000 e-mail: carashl@telus.net

1-002338 Lab Submission #:

Organism Biomass Data

Soil Foodweb Analysis

CARA-Humalite-Canola James Madges Box 690 Oven, Alberta T0J2J0 Fax: carashl@telus.net Plants: canola Sample Received: 5/22/2020 Invoice Numb 1-002338

Jiyaniisini	Diomass Dat	a								1-00233	0
			Active Bacterial	Total Bacterial	Active Fungal	Total Fungal	Average Hvphal		Protozoa		Total Nematode
Sample	Unique	Depth	Biomass	Biomass	Biomass	Biomass	Diameter		Numbers/g		(Dry Weigh
#	ID.	Inches	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µm)	Flagellates	Amoebae	Ciliates	`́#/g
750	Humalite	0-3	13	2,182	13	388	4.1	2,969	14,843	6	11.0
751	Humalite	3-6	12	5,324	0	236	3.5	3,070	509	0	3.7
755	Humalite	0-6	15	2,879	0	129	3.5	4,929	615	6	4.6
756	Humalite	6-12	9	3,226	0	75	3.0	890	6,154	0	1.1
Desired Ra	nge Pasture		10 - 25	150 - 300	10 - 25	150 - 300	(A)	10000 +	10000 +	50 - 100	20 - 30
Desired Ra	nge Canola		10 - 25	100 - 200	2 - 10	50 - 100	(A)	5000 +	5000 +	50 - 100	10 - 20
		<u> </u>									

(A) Hyphal diameter of 2.0 indicates mostly actinobacteria hyphae, 2.5 indicates community is mainly ascomycete, typical soil fungi for grasslands, diameters of 3.0 or higher indicate community is dominated by highly beneficial fungi, a Basidiomycete community.

Organism Ratios

Sample	Unique		Total Fungal	Active to	Active to	Active Fungal			<i>c</i>	
#	ID		То	Total Fungal	Total Bacterial	to Active	Nematode Feedin	0		
		Depth	Total Bacterial	Biomass	Biomass	Bacterial		#/g (\	Net Soil)	
		Inches	Biomass			Biomass	BactF	FungF	RootF	Pred
750	Humalite	0-3	0.178	0.033	0.006	0.960	6.56	1.31	2.40	0.00
751	Humalite	3-6	0.044	0.000	0.002	0.000	1.52	0.21	1.63	0.00
755	Humalite	0-6	0.045	0.000	0.005	0.000	2.63	0.20	1.46	0.00
756	Humalite	6-12	0.023	0.000	0.003	0.000	0.54	0.10	0.40	0.00
Desired Rar	nge		*(1)	*(2)	*(2)	*(3)			*(4)	

(1) Brassica: 0.2-0.5; Row crops: 0.6 to 1.2; Early successional grass: 0.5-0.75; Late successional grass: 0.8 to 1.5; Berries, shrubs, vines: 2-5; Deciduous Trees: 5-10; Conifer: 10-100.

(2) Warm spring, early summer: 0.25 to 0.95; Early spring, late winter & mid-summer: 0.10 to 0.15; Fall rain: 0.15 to 0.20;

Drought/frozen soil/heavy metal/many pesticides: 0.05 or lower. Values greater than indicated mean the organisms are recovering from

a negative impact. Values lower mean organisms are not recovering and help is needed, typically addition of their food resource is required.

(3) Generally 1:1 results in good soil aggregate structure in crop soil; 2 to 5 for deciduous trees; 5 for conifers. Values above 1:1 mean negative impact. Values lower mean organisms are not recovering and help is needed, typically addition of their food resource is required.

(4) Identification of Todes feeding groups: (BactF) Bacteria, (FungF) Fungal, (Pred) Predatory, (RootF) Plant/Root,

Season, moisture, soil and organic matter must be considered in determining optimal foodweb structure. All submissions receive free 15 minute consultation, call +1 403 664 3777

Notes: Protozoa numbers and types are an estimate of their appearance when counting them base on shapes, movements, sizes, colors, etc

	Protozoa Ty	/pes Num	bers (At Least)	Fungal	Hyphae]
Sample	Flagellates	Ciliates	Amoeba	Colors*	Diam (um)	Other Comments**
750	14	1	5	C, LB		Spore germinating (lots differents sizes), dominated by Cocci bacterias, large flagellates, Laimydorus doryuris (fungal feeder not seen before: 70.4.2reference), lots of root f with nematophagus
751	8	0	3	С	2-4.3	lots spores (DB) germinating, dominated by Cocci bacterias, large flagellates, low flagellates in wells
755	15	1	4	С, Т	2-5	diversity bacteria (cocci and diplococci)
756	7	0	2	С, Т	2-4.2	diversity bacteria (cocci and rob)

* C:Clear, B Brown, LB: Light Brown, DB: Dark Brown, Burg:Burgandy, T:Tan, LC-well-Flag: low count flagellates in wells, Very-tiny Flag: very tiny flagellates

** 24h-Spore-Germ: 24 hours spores germinating, D or Diam: diameter

Annex B- LR-Oats

SOIL HEALTH LAB REPORT

Humalite Project CARA- 2020 Oats Box 690 Oyen, Alberta T0J2J0 carashl@telus.net

Lab Submission # 1-002355

LAB #	SAMPLE NAME	DEPTH (inches)	LAND LOCATION	ASSESSMENT	OBSERVATIONS
980		0-6			
981	Westmoreland	6-12	SE 25-29-13-W4	Benchmark	
982		12-18			
983		18-24			

Highway 41E, Oyen, Alberta T0J 2J0

E-mail: carashl@telus.net

Phone: (403) 664 3777 **Fax:** (403) 664 3000

Annex B- LR-Oats-Biophysical & Others

Submission N/Land Location	Farmer Id No.	Sample No.	Depth (cm)	
1-002355		980	0-15	
1-002355	Westmoreland	981	15-30	
1-002355		982	30-45	

% Sand	% Silt	% Clay	Textural Class:	
39	37	23	Medium	Loam
42	35	23	Medium	Loam
47	29	24	Medium	Loam

Soil Health Analysis: Biophysical & Others

	· · · · ·									
	Indicator		Resu	ılts		Score	e	Constraint(s)		
	indicator	980	981	982	980	981	982	Cons	straint(s)	
	Wet Aggregate Stability (%)	18	10	19	24	13	10		n, water infiltration, rooting, , wind and water erosion,	
ľ	Water Infiltration (min)	11	11	11	99	99	99			
Physical	Bulk Density (g/cm3)	0.92	N/A	N/A	100	####	###			
	Compaction Depth/cm (200psi)	25	25	25	100	100	100			
	Compaction Depth/cm (300psi)	35	35	35	76	76	76			
	Physical Health:									
	Organic Matter (%)	4.6	4.6	4.6	91	91	91			
	Active Carbon (ppm)	208	779	944	6	93	93			
	Sample Depth		0-1	5			<u>.</u>	15-30	30-45	
cal	TN (%) (Total Nitrogen)		0.2	5				0.53	0.62	
Biological	TC (%) (Total Carbon)		3.4	3				16.45	21.81	
Bi	TOC (%) (Total Organic Carbon)		3.4	2				16.44	21.53	
	C:N Ratio	14	31	35	94	0 0		Slow SOM decay , orga activity and abundance, transformation, mineral		
	Microbial Respiration (mg CO ₂ /g)	0.52	1.25	1.79	39	98	98			
	Biological Health:									

Biological Health:

Physical and Biological Indicator Scores are calculated using the cumulative normal distribution function for Coarse, Medium, and Fine textural classes. Depending on the measured soil texture distribution, this worksheet identifies the appropriate soil textural class and uses the corresponding Scoring Function. Each Indicator Score represents the percentage of all samples scoring at or below the measured value when compared across the complete sample database. Indicator Scores are assigned a color grade using the follows system: Very High, Score of 80-100 (Blue); High, Score of 60-80 (Green); Medium, Score of 40-60 (Yellow); Low, Score of 20-40 (Orange); Very Low, Score of 0-20 (Red). For Other Nutrients Ratings, a Score of 1 is best (blue) and 0 is worst (red).

Submission N/Land Location	Farmer Id No.	Sample No.	Depth (cm)
1-002355	Westmoreland	980	0-15
1-002355	0	981	15-30

% Sand	% Silt	% Clay	Textural Class:	
39	37	23	Medium	Loam
42	35	23	Medium	Loam

Soil Health Analysis: Biophysical & Others

		Resi	ılts	Sco	ore				
	Indicator	980	981	980	981	Suggestion(s)			
	Wet Aggregate Stability (%)	18	10	24	13	Short: Improve soil Biology diversity • Use deep & shallow-rooted cover (cocktail) /rotation crops • Add manure, green manure, mulch. Long: Reduce tillage • Rotate with sod crops • Incorporate high biomass cover (cocktail) crop			
	Water Infiltration (min)	11	11	99	99				
Physical	Bulk Density (g/cm3)	0.92	N/A	100	#VALUE!				
Pł	Compaction Depth/cm (200psi)	25	25	100	100				
	Compaction Depth/cm (300psi)	35	35	76	76				
			ŀ	Physic	cal H	Iealth:			
	Organic Matter (%)	4.6	4.6	91	91				
Biological	Active Carbon (ppm)	208	779	6	93				
Н	C:N Ratio	14	31	94	0				
	Microbial Respiration (mg CO ₂ /g)	0.52	1.25	39	98				
			B	iolog	ical l	Health:			

Report Number: C20185-10041 Account Number: 01207

To: CHINOOK APPLIED RESEARCH ASSOC BOX 690 HIGHWAY 41 EAST OYEN, AB T0J 2J0

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: CARA SHL SN 1-002355

Page: 1 / 1

Annex B-LR-Oats-Chemicals

Grower Code: 1-002355

Reported Date:2020-07-07	Printed Date: Jul 7,	2020
--------------------------	----------------------	------

SOIL	TEST	REPORT	Γ

Sample	Legal Land Descpt:	Depth	Lab	Organic	•	rus - P ppm	Potassi			alcium	pH	CEC			ase Satu	
Number	v .	•	Number		Bicarb	Bray-P1	K ppr					meq/100g				6 H % Na
980	WESTMORELAND) 0	06757	4.6	14 L	23 L	280 V	H 56	0H 24	30 M 6	6.4 6.9	19.1	3.8	24.5	63.7 6	5.0 2.1
981	WESTMORELAND) 0	06758													
982-983	WESTMORELAND	0 0	06759													
Sample Number	Sulfur S	Nitrate Nitro NO3-N	-	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Soluble Salts	Saturation %P	Aluminum Al ppm	Saturatior %AI	K/Mg Ratio	ENR		Sodium Na ppm
	ppm lbs/ac		s/ac						mmhos/cm						ppm	<u> </u>
980	59 M	20 H		4.1 M	33 H	81 VH	0.9 M	0.9 M	0.6 L	4 M	734	0.2 G	0.16	59	13	94 VH
981	297 VH	39 H														
982-983	406 VH	31 H														
W VL = '	VERY LOW, L = LOW, M	= MEDIUM, H	= HIGH, \	VH = VEF	Y HIGH, G =	GOOD, MA :	= MARGINA	L, MT = M	ODERATE PI	ΗΥΤΟ-ΤΟΧΙΟ	C, T = PHYT	D-TOXIC, S	Γ = SE'	VERE	ΡΗΥΤΟ-ΤΟ	OXIC
					SOIL FE	RTILITY G		ES (Ibs/a	ac)							

Sample Number	Previous Crop	Intended Crop	Yield Goal	Lime Tons/Acre	Ν	P2O5	K2O	Mg	Ca	S	Zn	Mn	Fe	Cu	В
980		Oats	60 bu	0.0	75	15	15	0	0	0	0.0	0	0	1	0.0
980		Oat Build	60 bu	0.0	75	20	25	0	0	0	0.0	0	0	1	0.0

Annex B- LR-Oats- SFW

CARASHLab

Highway 41E, Oyen, Alberta T0J 2J0 Canada Phone: (403) 664 3777 Fax: (403) 664 3000 e-mail: carashl@telus.net

Lab Submission #:

1-002355

Organiem Biomase Data

Soil Foodweb Analysis

Humalite Project CARA- 2020 Oats Box 690 Oyen, Alberta T0J2J0 Fax: carashl@telus.net Plants: grass Sample Received: 6/24/2020 a Numb 1 002255

Biomass Data								Invoice Numb	1-00235	5
		Active	Total	Active	Total	Average				Total
		Bacterial	Bacterial	Fungal	Fungal	Hyphal		Protozoa		Nematode
Unique	Depth	Biomass	Biomass	Biomass	Biomass	Diameter		Numbers/g		(Dry Weigh
ID	Inches	(µg/g)	(µg/g)	(µg/g)	(µg/g)	(µm)	Flagellates	Amoebae	Ciliates	#/g
Westmoreland	0-6	35	14,670	0	145	3.1	3,289	203	7	1.0
Westmoreland	6-12	7	17,940	0	66	2.8	2,608	208	7	0.3
Westmoreland	12-18	1	21,067	0	14	2.0	102	0	0	0.0
Westmoreland	18-24	1	19,172	0	0	0.0	39	0	0	0.0
nge Pasture		10 - 25	150 - 300	10 - 25	150 - 300	(A)	10000 +	10000 +	50 - 100	20 - 30
Desired Range Annual crops 1 - 5				1 - 5	175 - 300	(A)	5000 +	5000 +	50 - 100	10 - 20
	Unique ID Westmoreland Westmoreland Westmoreland Westmoreland	Unique Depth ID Inches Westmoreland 0-6 Westmoreland 6-12 Westmoreland 12-18 Westmoreland 18-24	Active Bacterial Unique Depth ID Inches ID Inches Westmoreland 0-6 6-12 7 Westmoreland 12-18 Westmoreland 18-24 IN 10 - 25	ActiveTotal BacterialUniqueDepthBiomassBiomassIDInches(μg/g)(μg/g)Westmoreland0-63514,670Westmoreland6-12717,940Westmoreland12-18121,067Westmoreland18-24119,172mge Pasture10 - 25150 - 300	Active BacterialTotal BacterialActive FungalUnique IDDepth InchesBiomassBiomass BiomassBiomass BiomassWestmoreland0-63514,6700Westmoreland6-12717,9400Westmoreland12-18121,0670Westmoreland18-24119,1720	ActiveTotalActiveTotalBacterialBacterialBacterialFungalFungalUniqueDepthBiomassBiomassBiomassBiomassIDInches(µg/g)(µg/g)(µg/g)(µg/g)Westmoreland0-63514,6700145Westmoreland6-12717,940066Westmoreland12-18121,067014Westmoreland18-24119,17200nge Pasture10 - 25150 - 30010 - 25150 - 300	Active BacterialTotal BacterialActive BacterialTotal FungalAverage FungalUnique IDDepth InchesBiomassBiomassBiomassBiomassDiameterUInches(µg/g)(µg/g)(µg/g)(µg/g)(µg/g)(µm)Westmoreland0-63514,67001453.1Westmoreland6-12717,9400662.8Westmoreland12-18121,0670142.0Westmoreland18-24119,172000.0nge Pasture10 - 25150 - 30010 - 25150 - 300(A)	Active Total Active Total Average Bacterial Bacterial Bacterial Fungal Fungal Hyphal Unique Depth Biomass Biomass Biomass Biomass Biomass Diameter ID Inches (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) Flagellates Westmoreland 0-6 35 14,670 0 145 3.1 3,289 Westmoreland 6-12 7 17,940 0 666 2.8 2,608 Westmoreland 12-18 1 21,067 0 144 2.0 102 Westmoreland 18-24 1 19,172 0 0 0.0 39 <td>Active BacterialTotal BacterialActive FungalTotal FungalAverage HyphalProtozoaUnique IDDepth InchesBiomassBiomassBiomassBiomassDiameterNumbers/g FlagellatesWestmoreland0-63514,67001453.13,289203Westmoreland6-12717,9400662.82,608208Westmoreland12-18121,0670142.01020Westmoreland18-24119,172000.0390</td> <td>Active BacterialTotal BacterialActive BacterialTotal FungalAverage FungalProtozoaUnique IDDepth InchesBiomassBiomassBiomassBiomassDiameterNumbers/g FlagellatesWestmoreland0-63514,67001453.13,2892037Westmoreland6-12717,9400662.82,6082087Westmoreland12-18121,06701442.010200Westmoreland18-24119,17200603900</td>	Active BacterialTotal BacterialActive FungalTotal FungalAverage HyphalProtozoaUnique IDDepth InchesBiomassBiomassBiomassBiomassDiameterNumbers/g FlagellatesWestmoreland0-63514,67001453.13,289203Westmoreland6-12717,9400662.82,608208Westmoreland12-18121,0670142.01020Westmoreland18-24119,172000.0390	Active BacterialTotal BacterialActive BacterialTotal FungalAverage FungalProtozoaUnique IDDepth InchesBiomassBiomassBiomassBiomassDiameterNumbers/g FlagellatesWestmoreland0-63514,67001453.13,2892037Westmoreland6-12717,9400662.82,6082087Westmoreland12-18121,06701442.010200Westmoreland18-24119,17200603900

(A) Hyphal diameter of 2.0 indicates mostly actinobacteria hyphae, 2.5 indicates community is mainly ascomycete, typical soil fungi for grasslands, diameters of 3.0 or higher indicate community is dominated by highly beneficial fungi, a Basidiomycete community.

Organism Ratios

Sample	Unique		Total Fungal	Active to	Active to	Active Fungal				
#	ID		То	Total Fungal	Total Bacterial	to Active	Nematode Feeding	g Habit Identi	fied	
		Depth	Total Bacterial	Biomass	Biomass	Bacterial		#/g (\	Vet Soil)	
		Inches	Biomass			Biomass	BactF	FungF	RootF	Pred
980	Westmoreland	0-6	0.010	0.000	0.002	0.000	0.54	0.28	0.00	0.00
981	Westmoreland	6-12	0.004	0.000	0.000	0.000	0.23	0.05	0.00	0.00
982	Westmoreland	12-18	0.001	0.000	0.000	0.000	0.01	0.01	0.00	0.00
983	Westmoreland	18-24	0.000	0.000	0.000	0.000	0.00	0.01	0.00	0.00
Desired Rar	nge		*(1)	*(2)	*(2)	*(3)			*(4)	

(1) Brassica: 0.2-0.5; Row crops: 0.6 to 1.2; Early successional grass: 0.5-0.75; Late successional grass: 0.8 to 1.5; Berries, shrubs, vines: 2-5; Deciduous Trees: 5-10; Conifer: 10-100.

(2) Warm spring, early summer: 0.25 to 0.95; Early spring, late winter & mid-summer: 0.10 to 0.15; Fall rain: 0.15 to 0.20;

Drought/frozen soil/heavy metal/many pesticides: 0.05 or lower. Values greater than indicated mean the organisms are recovering from

a negative impact. Values lower mean organisms are not recovering and help is needed, typically addition of their food resource is required.

(3) Generally 1:1 results in good soil aggregate structure in crop soil; 2 to 5 for deciduous trees; 5 for conifers. Values above 1:1 mean negative impact. Values lower mean organisms are not recovering and help is needed, typically addition of their food resource is required.

(4) Identification of Todes feeding groups: (BactF) Bacteria, (FungF) Fungal, (Pred) Predatory, (RootF) Plant/Root,

Season, moisture, soil and organic matter must be considered in determining optimal foodweb structure. All submissions receive free 15 minute consultation, call +1 403 664 3777

Notes: Protozoa numbers and types are an estimate of their appearance when counting them base on shapes, movements, sizes, colors, etc

	Protozoa Types Numbers (At Least)			Fungal Hyphae		
Sample	Flagellates	Ciliates	Amoeba	Colors*	Diam (um)	Other Comments**
980	11	1	2	С, Т		actinobacteria, lots of very tiny mobile bacteria, 2 um D septated tan hypha, round flagellates and oval with bacteria like interacting attached, rugosa amoeba, few amoeba and flagellates in wells, rotifers
981	7	1	3	С	2-3	very tiny mobile bacteria, few round flagellates, tiny & small/ few flagellates, very tiny amoebae
982	5	0	0	С	2	low flagellates,
983	2	0	0	NA	NA	Actinobacteria, very low flagellates

* C:Clear, B Brown, LB: Light Brown, DB: Dark Brown, Burg:Burgandy, T:Tan, LC-well-Flag: low count flagellates in wells, Very-tiny Flag: very tiny flagellates

** 24h-Spore-Germ: 24 hours spores germinating, D or Diam: diameter